
CprE 381: Computer Organization and Assembly-Level
Programming

Project Part 2 Report
Team Members: Jake Hafele

Thomas Gaul

[1.a] Come up with a global list of the datapath values and control signals that are required
during each pipeline stage.

SW Pipeline Control Signals

1



SW Pipeline Datapath Signals

[1.b.ii] high-level schematic drawing of the interconnection between components.

2



[1.c.i] include an annotated waveform in your writeup and provide a short discussion of
result correctness.

The assembly file ran is titled Proj2SW_cf_test.s

40ns- addi
100ns- add
160ns- addiu

220ns- addu
280ns- sub
340ns- subu

3



400ns- lui
420ns- nop
460ns- ori
480ns- nop
520ns- and
540ns- andi
560ns- nor

580ns- xor
600ns- xori
620ns- or
640ns- ori
660ns- andi
700ns- nop
740ns- slt

4



780ns- slti
900ns- lui

920ns- nop
960ns- ori
980ns - nop
1020ns- sll
1060ns- srl

5



1100ns- sra
1140ns- addi
1160ns- lui
1180ns- halt

6



[1.c.ii] Include an annotated waveform in your writeup of two iterations or recursions of
these programs executing correctly and provide a short discussion of result correctness. In
your waveform and annotation, provide 3 different examples (at least one data-flow and one
control-flow) of where you did not have to use the maximum number of NOPs.

The assembly file ran is Proj2SW_bubblesort.s

0x0000 0x0004 0x0008 0x000c

step array[0] array[1] array[2] array[3]

null 3105 5 -68 3

0 5 -68 3 3105

1 -68 3 5 3105

2 -68 3 5 3105

3 -68 3 5 3105

Each step in the above table represents a full sweep through each array value to compare
with the next index, to see if it is larger than the following array index. If it is the case,
then the two values swap positions and are rewritten into the data memory with swapped
indices. The following five screenshots show when s_DMEM_mem_WE is asserted to 1,
indicating a write to the data memory of the array has occurred. We can prove our design
works as intended by confirming that the smaller of the two compared array values is
written first to the lower array memory address, and in turn getting “sorted” to a lower
index. Given the above table, this swap occurs 5 times between the first two loops. Each
screenshot below shows one swap at the cursor position, taking two consecutive
instructions to write back to the data memory.

7



Bubble Sort Array Swap 1

Bubble Sort Array Swap 2

Bubble Sort Array Swap 3

8



Bubble Sort Array Swap 4

Bubble Sort Array Swap 5

In the below screenshot, the instruction decoded in the ID stage following the cursor is
the ori instruction, described by the s_ID_OPCODE signal being 0x0D. After this
instruction, we can see that only one NOP instruction is decoded next as s_ID_INSTR is
0x00000000. This shows that we did not use 5 NOP instructions for every single signal.
We updated our register file such that the register read would output the incoming
memory that was being written before the clock cycle, which reduced our potential of

9



NOP’s from 3 to 2 for any arithmetic or ALU operation. In other cases, like seen below, it
can still help to reduce some NOP’s from 2 down to 1, or even 1 to using none!

Bubble Sort Data Flow NOP Proof

Based on the below screenshot, it can be seen that we are branching because the
s_ID_branch_chk control signal is asserted to 1 after the cursor. After the branch
instruction, it can be seen that the next decoded instruction is 0x00000000, which is a
NOP. After the NOP, the program resumes with a regular instruction that is intended for
the Bubble Sort algorithm. Since we moved our branch module from the ALU in the EX
stage to the top level in the ID stage, we only need to wait for one cycle with a NOP to
determine a branch, and in turn find the next PC.

10



Bubblesort Control Flow NOP Proof

[1.d] report the maximum frequency your software-scheduled pipelined processor can run
at and determine what your critical path is (specify each module/entity/component that this
path goes through).

Our maximum frequency reported was 55.05 MHz.
The critical path follows as:

1. Data Memory
2. Reg Address MUX
3. Register File
4. Branch module
5. Prefetch Module to update PC

The longest path occurred in our Instruction Decode stage. The path followed decoding a
given register, and passing that along to the branch module which determined if a branch
should be made or not. Then, the PC finally got updated. We moved the branch
conditional check outside of the ALU and into the ID stage to help prevent less NOP’s in
our test code and stalling later on. Now, we can see the tradeoff of having to wait for the
register file contents for the RS and RT DATA to propagate and output from the register
file before checking the branch conditions. For project 3, we could analyze the tradeoffs
on reducing the CPI of branch instructions by 1 versus the added propagation delay after
the register file in our instruction decode stage. It could be the case that the next slowest
propagation is only slightly faster, in which case would lead to a much better benefit in
keeping the conditional branch module in the ID phase, to reduce CPI.

11



[2.a.ii] Draw a simple schematic showing how you could implement stalling and flushing
operations given an ideal N-bit register.

The following example depicts an N-bit register that has both stalling and flushing operations. To
stall a pipeline register for one cycle, the i_stall input control signal will be asserted to 1. This
means that each DFF in the pipeline register will not be written on the next positive edge clock
cycle, instead HOLDING it’s previous contents. To flush, we will MUX 0’s in for every bit so
that on the POSITIVE EDGE of the next clock cycle, the pipeline register will be filled with 0’s
and not affect any registers or memory.

12



[2.a.iii] Create a testbench that instantiates all four of the registers in a single design. Show
that values that are stored in the initial IF/ID register are available as expected four cycles
later, and that new values can be inserted into the pipeline every single cycle. Most
importantly, this testbench should also test that each pipeline register can be individually
stalled or flushed.

The following waveform depicts our testbench that instantiates all four pipeline register
buffers in a single testbench. For this test, we only used one sample datapath signal that
propagates throughout each pipeline register, which was PC_4. Initially, we began by
buffering decimal 1 through the IF_ID_PC_4 pipeline register, and then waiting 4 clock
cycles to confirm decimal 1 is propagated through each pipeline register. The order of the
pipeline registers follows the stages between them, following IF_ID, ID_EX,
EX_DMEM, and finally DMEM_WB. If we write a signal decimal 2 and hold that value
through multiple clock cycles, 2’s are confirmed to be filled through each pipeline
register as expected. When we wrote decimal 4 for IF_PC_4, we drove the stall control
for each pipeline register on the clock cycle; it was expected to write a new value for
PC_4, indicating that the old contents of 0 were not written over. Finally, we simulated a
condition that had two data hazards and a control hazard, which led to two stalls and then
a flush. This was very beneficial to test since a sample set of instructions with a
read/write data dependency and a flush was how we derived the logic for our data hazard
module.

13



[2.b.i] list which instructions produce values, and what signals (i.e., bus names) in the
pipeline these correspond to.

14



[2.b.ii] List which of these same instructions consume values, and what signals in the
pipeline these correspond to.

15



[2.b.iii] generalized list of potential data dependencies. From this generalized list, select
those dependencies that can be forwarded (write down the corresponding pipeline stages
that will be forwarding and receiving the data), and those dependencies that will require
hazard stalls.

[2.b.iv] global list of the datapath values and control signals that are required during each
pipeline stage

HW Pipeline Control Signals

HW Pipeline Datapath Signals

16



[2.c.i] list all instructions that may result in a non-sequential PC update and in which
pipeline stage that update occurs.

beq- decode
bne- decode
j- decode
jal- decode
jr- decode
bgez- decode
bgezal- decode
bgtz- decode
blez- decode
bltzal- decode
bltz- decode

[2.c.ii] For these instructions, list which stages need to be stalled and which stages need to
be squashed/flushed relative to the stage each of these instructions is in.

beq- if branch taken instruction IF_ID flush
bne- if branch taken instruction IF_ID flush
j- instruction IF_ID flush
jal- instruction IF_ID flush
jr- instruction IF_ID flush
bgez- if branch taken instruction IF_ID flush
bgezal- if branch taken instruction IF_ID flush
bgtz- if branch taken instruction IF_ID flush
blez- if branch taken instruction IF_ID flush
bltzal- if branch taken instruction IF_ID flush
bltz- if branch taken instruction IF_ID flush

Any time an unconditional or conditional branch is taken, we will flush the IF_ID register
ONLY, since we have moved our branch checking to the ID stage. We load PC+4 after
the branch and jump instructions, predicting that the branch will NOT be taken, and will
NOT flush the instruction if it is not.

17



[2.d] implement the hardware-scheduled pipeline using only structural VHDL. As with the
previous processors that you have implemented, start with a high-level schematic drawing
of the interconnection between components.

18



[2.e.i] Create a spreadsheet to track these cases and justify the coverage of your testing
approach. Include this spreadsheet in your report as a table. Show the Questasim output for
the following test

Test data forwarding and hazard detection here

19



Data Hazard Test Cases

ALU_RS Data Hazard Test Cases

ALU_RT Data Hazard Test Cases

20



Control/Jump Data Hazard Test Cases

DMEM Data Hazard Test Case

[2.e.ii] Create a spreadsheet to track these cases and justify the coverage of your testing
approach. Include this spreadsheet in your report as a table. Show the Questasim output for
the following test

Create a set of assembly programs that exhaustively tests control hazard avoidance.
Minimally include one test program per control flow instruction. Then you should create
a set of test programs that activate combinations of these instructions in the pipeline.

21



Control Hazard Test Cases

The following waveforms demonstrate that when a control hazard occurs, the IF/ID
pipeline register flushes all of its contents. The control hazard occurs when a branch is
taken, since we will already be fetching the PC + 4 instruction after the branch or jump
instruction. We designed our prediction module to not flush the IF/ID Buffer register
when we do not branch, to help improve our CPI. In the following three waveforms, near
the cursor, it can be seen that one NOP is propagated ONLY when a branch is taken.

J Instruction Control Hazard Test Case

BEQ Instruction Control Hazard Test Case

22



BGEZAL Instruction Control Hazard Test Case

In our final test, we created the assembly file branch_explosion_controlHazard.s, which
simulates 5 consecutive branch taken conditions in a row. Amazingly, this passed by the
end of everything. As with our other validation and waveforms, the instruction that was
fetched in the IF stage after the branch instruction would get flushed on every branch
taken, as seen below in the following waveforms.

Multiple Consecutive Branch Instructions Control Hazard Test Case

[2.f] report the maximum frequency your hardware-scheduled pipelined processor can run
at and determine what your critical path is (specify each module/entity/component that this
path goes through).

Maximum frequency WITH forwarding: 48.66 MHz

Critical Path:
1. Data Memory (?)
2. MUX to ALU
3. ALU (Ripple Adder)
4. ALU (Ripple SLL)
5. EX/DMEM Pipeline Register (MUX to write)

We assumed that the critical path changed from our ID stage to our EX stage due to adding more
multiplexers from the pipeline registers to the ALU inputs, leading to the increased timing delay
before the ALU processes its operations. Similar to the single cycle, the ALU ripple carry adder
led to a very high propagation delay, leading to our critical path again once we added more
hardware for forwarding. Despite this, our CPI dropped to an average of 1.50 for our tests, which
is a good tradeoff for decreasing the maximum frequency by around 6 MHz from a CPI average
of near 2.1.

23


