Control Signal

CprE 381: Computer Organization and Assembly-Level

Programming

Project Part 2 Report

Team Members:

Jake Hafele

Thomas Gaul

[1.a] Come up with a global list of the datapath values and control signals that are required
during each pipeline stage.

s_DMEM_Halt s_WB_Halt

s_ID_nZero_Sign

Sign extender in D stage

s_ID_ALUSrc

s_ID_overflow_chk

s_DMEM_overflow_chk s_WB_overflow_chk

Overflow checked in last stage

s_ID_branch_chk

Branch control in ID stage

s ID_reg_DST_ADDR_SEL [1:0]

s_EX_reg_DST_ADDR_SEL [1:0] Writeback in last stage

s_ID_reg_DST_DATA_SEL [1.0]

s_DMEM_reg_DST_DATA_SEL [1:0] |s_WB_reg_DST_DATA_SEL [1:0] Writeback in last stage

s EX_reg_DST_DATA_SEL [1.0]

s_EX reg WE

s_EX_mem_WE

s_DMEM_mem_WE

s_ID_branch_SEL[2:0]

s_|D_nAdd_Sub

s_EX_nAdd_Sub

s_ID_shift_SEL[1:0]

s_EX_shift_SEL[1:0]

s_ID_logic_SEL[1:0]

s_EX_logic_SEL[1:0]

s_ID_out_SEL[1:0]

s EX_out_SEL[1.0]

SW Pipeline Control Signals

Datapath Signal

1D (Instruction Decode) Notes
s_ID_branch s_EX_branch

branch
PC [31:0] s_IF_PC[31:0] Assign to nextinstrAddr

Has to propogate through for writeback for jal
PC_4[31:0] s_IF_PC_4[31:0] s_ID_PC_4[31.0] s_EX_PC_4[31:0] s_DMEM_PC_4[31:0] |s_WB_PC_4[31.0] tossetr[31]=PC +4

Use given Instr signal for IF

INSTR [31:0] s_ID_INSTR [31.0]
s_ID_OPCODE [5:0]
s_ID_FUNCT [5:0]
s_ID_ri_ADDR [4.0]
s_ID_rs_ADDR [4:0]

s_ID_rd_ADDR [4:0] s_EX_rd_ADDR [4:0]
s_ID_SHAMT [40] s_EX_SHAMT [40]

Needed for WB

Mot needed since sign extender in ID and
turns into sign extended immediate 32 bit

s 1D_IMM [15:0]
s ID_J ADDR [25:0]
s_ID_rs_DATA [31:0] s_EX_rs_DATA [31:0]
s_ID_rt_DATA [31:0] s EX_rt_DATA [31:0]

DMemData used in DMEM stage
DMemAddr used in DMEM stage. When to
assign for output? WB?

MUX for second ALU operand between RT
DATA and EXT IMM

s_DMEM_ri_DATA [31:0]

s WB_ALUOut [31:0]

s EX_ALUOut [31:0]

s EX_rt DATA MUX [31]

s_ID_IMM_EXT [31:0] s EX_IMM_EXT [31:0]

s_EX_overflow s_DMEM_overflow s_WB_overflow

MNeeded between EX/IMEM buffer to writeback
s_DMEM_DMEM_DATA [{s_WB_DMEM_DATA [31| MUX

Final write signal, MUXXED out
MUX with rd_ADDR, ri_ADDR, and decimal

s DMEM_ALUOut [31:0]

RegWr s_EX_RegWr s_DMEM_Reg\Wr s_WEB_RegWr

RegWrAddr [4:0] s_EX_RegWrAddr [4:0] [s_DMEM_RegWrAddr [4:(s_\WB_RegWrAddr [4:0] (31 ($ra reg)
SW Pipeline Datapath Signals
[1.b.ii] high-level schematic drawing of the interconnection between components.
= e) SRS
ot |——] ll_:ﬂ =g p——— e o s
o [
i |
"

[1.c.i] include an annotated waveform in your writeup and provide a short discussion of
result correctness.

The assembly file ran is titled Proj2SW_cf test.s

Fomotoe Voo Voo s

00400004 [004 40000C [o 0 [00400014 [00400018 [0040001C [004000:

s_ID_OPCODE

s_ID_FUNCT

s_ID_PC_4

5_ID_rs_ADDR

s_ID_t_ADDR

s_ID_rd_ADDR

s_ID_rs_DATA 0000001 [00000000 [FFFFFEFE 0000000
s_ID_t DATA 1 [5oo00001| 00000000 _ JFFFFFFEE

s EX_rd_ADDR 3
5_EX_1s_DATA C FFFFFFFE
FFFFFFFE

FFFFFFFF C FFFFFFFE

40ns- addi
100ns- add
160ns- addiu

Wave - Default

00400020] 00400 004000; 1004000 [0040003 00400034 1004000 [0020003 00400040 J004,

100400040 | 100400044 |

700000003 | 00000000 | | FFFFFFFD

00! 0 | FEFFFFFE 00000003 100000000 [FEFFFEFD 00C & 100000000 | FEFEFFFA FEFFFFFS Ic

0A
s_EX_rd_ADDR ¢ 1F [0A
“ s_EX_rs_DATA 0 FFFFFFFE 0 FFFFFFFD
FFFFFFFE 00000€ FFFFFFFD 0 FFFFFFFA
FFFFFFFD 0000 FFFFFFFA 0000000 00000006

s _DMEM_reg_DS..
s_DMEM_mem
“ 5_DMEM_PC_4

J h "

60 ns
Cursor 9

220ns- addu
280ns- sub
340ns- subu

5_ID_rd_ADDR
5ID_rs_DATA

s EX_it_ADDR C C 00 0
s_EX_d_ADDR |5h00 0A 00 0A
0 FFFFO000 00000C
00000006 00000000 FFFFO000 FFFFFFFE
FFFFFFFA FFFFFFFF

Cursor 17

400ns- lui
420ns- nop
460ns- ori
480ns- nop

[390A000: [00C 5 13504001 I 5 FFFB] 00000000 [0z A {01095

04001 100400080 [0 [0040 Jo0a0
32n0128502A
Fh2a

00400,

s ID_rd_ADDR

5_ID_rs_DATA FFFFFFFE FFFFFFFE

5_ID_rt_DATA 0000000C FFFFFEFE FEFFFFFF 00000000

0A

1 op 00 00
5_EX_rs_DATA FFFFFFFF 00000000 FFFFFFFF 0 FFFFFFFF
s_EX_rt_DATA FFFFFFFF

580ns- xor
600ns- xori
620ns- or
640ns- ori
660ns- andi
700ns- nop
740ns- slt

3201095024
32'000400090

32001285024

5_ID_rs_ADDR
+ 4 s_ID_rt_ADDR
B s_ID_rd_ADDR
“ s _ID_rs_DATA
“ s_ID_nt DATA
— Execute
& s EX_nAdd_Sub

s_EX_rd_ADDR
5 EX_1s_DATA

Cursor 36
L]

780ns- slti
900ns- lui

[Wave - Default

s5_ID_FUNCT

s ID_PC 4
5_ID_rs_ADDR
s ID_rt ADDR
s5_ID_rd_ADDR
5_ID_rs_DATA
s ID_rt DATA

s_EX_rd_ADDR
s EX_rs DATA 3 | 00000000
s_EX_rt_DATA 00000005

Cursor 40 1060 ns

920ns- nop
960ns- ori

980ns - nop
1020ns- sll
1060ns- srl

1

[
FFFFRFEF

[0ofoooBs [JoomoooBC] — leoaseoce] 100400 [oosoooce [foosooocc[JooaoooDo[]

004
00
00

00000000
000

00000005
FFFFFFFB

1F

FFFFO000
FFFF

joodoooce | |

20 ns

00000000

[il}

00000000

09

0000FFFF
00

it

004000D4___[004000D8 [004000DC [004000E0 [004000E4 Jo04000E8 [004000ECT {004000F0 {004000F4

[00a [004000E0 04000E4 [004000E8 [| 00! FO 1004000F4 T00a

B s ID_FUNCT
sIDPC 4
s ID_rs ADDR
s ID_rt ADDR
s ID_rd_ADDR
5_ID_rs_DATA
5_ID_t_DATA

5_EX_logic_SEL.
5_EX_out SEL
S EX_PC 4
s EX_1t ADDR
s EX_rd_ADDR
s EX_rs_DATA
s EX_rt_DATA
s EX_ALUOut
— DMEM
s DMEM reg DS...
- I o

1100

Cursor 46 1200 ns.

1100ns- sra
1140ns- addi
1160ns- lui
1180ns- halt

04D00ED 000! J004000F0 | |004000F4

[1.c.ii] Include an annotated waveform in your writeup of two iterations or recursions of
these programs executing correctly and provide a short discussion of result correctness. In
your waveform and annotation, provide 3 different examples (at least one data-flow and one
control-flow) of where you did not have to use the maximum number of NOPs.

The assembly file ran is Proj2SW_bubblesort.s

0x0000 [0x0004 | 0x0008 | 0x000c
step | array[0] |[array[1] | array[2] | array[3]
null 3105 5 -68 3
0 5 -68 3 3105
1 -68 3 5 3105
2 -68 3 5 3105
3 -68 3 5 3105

Each step in the above table represents a full sweep through each array value to compare
with the next index, to see if it is larger than the following array index. If it is the case,
then the two values swap positions and are rewritten into the data memory with swapped
indices. The following five screenshots show when s DMEM_mem_WE is asserted to 1,
indicating a write to the data memory of the array has occurred. We can prove our design
works as intended by confirming that the smaller of the two compared array values is
written first to the lower array memory address, and in turn getting “sorted” to a lower
index. Given the above table, this swap occurs 5 times between the first two loops. Each
screenshot below shows one swap at the cursor position, taking two consecutive
instructions to write back to the data memory.

© s DMEM_mem_WE
©-/ s DMEM_DMEM_DATA
o

“s_RegWiData.
s WB_RegWrAddr

Bubble Sort Array Swap 1

o si_Pca
©-/ s ID_rs ADDR

& sID_t ADDR
& sID_rd_ADDR
& sID_rs DATA
& sID_t DATA
— Execute
B s EX_nAdd_Sub
B s EXshit SEL
“ s EX_logic_SEL
©° s EX out SEL
B’ sEXPC4
B s EXADDR
B s EX_1d ADDR
B s EX1s DATA

s_ID_FUNCT
sID_PC_4

51D 1s ADDR
s_ID_ft_ADDR
5_ID_rd_ADDR

S_WR_RegWr
s_RegWiData
S_WB_RegWrAddr

1950 n:

Bubble Sort Array Swap 3

S_EX_logic_SEL
S_EX_out SEL

S WB_RegWr
s RegWiDaia
S WB_RegWrAddr

5_RegWiData
5_WB_RegWrAddr

Bubble Sort Array Swap 5

In the below screenshot, the instruction decoded in the ID stage following the cursor is
the ori instruction, described by the s ID_OPCODE signal being 0x0D. After this
instruction, we can see that only one NOP instruction is decoded next as s ID INSTR is
0x00000000. This shows that we did not use 5 NOP instructions for every single signal.
We updated our register file such that the register read would output the incoming
memory that was being written before the clock cycle, which reduced our potential of

NOP’s from 3 to 2 for any arithmetic or ALU operation. In other cases, like seen below, it
can still help to reduce some NOP’s from 2 down to 1, or even 1 to using none!

£

— General Inputs

ICLK

s_ID_INSTR
s_ID_OPCODE
s ID_FUNCT

s ID_PC_4

32°h00000000
32'h00400018
32'h0040001C

32'h34050004
E'hoD
E'h04
32'h00400018

5_ID_rs_ ADDR
s |ID_rt ADDR
s ID_rd_ADDR
5_ID_rs_DATA
s |D_rt DATA

LA o o o i o o

|+
|+
.
[+8
|+
|+
.
[+2
|+

|
4
g
7

B s EX_nAdd_Sub
B s EX_shit SEL
B~ s EX logic SEL
+ 4 s EX out SEL
s EX_PC_4
s EX_rt ADDR
s _EX_rd_ADDR
5 EX rs DATA
s EX_rt DATA
s _EX_ALUOut

32'h00400014
S'd4

5'do
32'd268500992
32°'d0
32'd268500992

00400010

Bubble Sort Data Flow NOP Proof

Based on the below screenshot, it can be seen that we are branching because the

s ID branch chk control signal is asserted to 1 after the cursor. After the branch
instruction, it can be seen that the next decoded instruction is 0x00000000, which is a
NOP. After the NOP, the program resumes with a regular instruction that is intended for
the Bubble Sort algorithm. Since we moved our branch module from the ALU in the EX
stage to the top level in the ID stage, we only need to wait for one cycle with a NOP to
determine a branch, and in turn find the next PC.

10

— Instruction Fetch
B s Inst

B’ s IFPC

B’ sIFPC4
— Instruction Decode
B s ID_INSTR

B s |D_OPCODE
B s ID_FUNCT
B sIDPC4
B s ID_rs_ADDR
B s ID_rt ADDR
B s ID_rd_ADDR
B s ID_rs_DATA
B s ID_rt DATA
£ s ID_branch_chk
B s ID branch

Bubblesort Control Flow NOP Proof

[1.d] report the maximum frequency your software-scheduled pipelined processor can run
at and determine what your critical path is (specify each module/entity/component that this
path goes through).

Our maximum frequency reported was 55.05 MHz.
The critical path follows as:

Data Memory
Reg Address MUX
Register File

Branch module
Prefetch Module to update PC

MRS

The longest path occurred in our Instruction Decode stage. The path followed decoding a
given register, and passing that along to the branch module which determined if a branch
should be made or not. Then, the PC finally got updated. We moved the branch
conditional check outside of the ALU and into the ID stage to help prevent less NOP’s in
our test code and stalling later on. Now, we can see the tradeoff of having to wait for the
register file contents for the RS and RT DATA to propagate and output from the register
file before checking the branch conditions. For project 3, we could analyze the tradeoffs
on reducing the CPI of branch instructions by 1 versus the added propagation delay after
the register file in our instruction decode stage. It could be the case that the next slowest
propagation is only slightly faster, in which case would lead to a much better benefit in
keeping the conditional branch module in the ID phase, to reduce CPI.

11

[2.a.ii] Draw a simple schematic showing how you could implement stalling and flushing
operations given an ideal N-bit register.

The following example depicts an N-bit register that has both stalling and flushing operations. To
stall a pipeline register for one cycle, the i_stall input control signal will be asserted to 1. This
means that each DFF in the pipeline register will not be written on the next positive edge clock
cycle, instead HOLDING it’s previous contents. To flush, we will MUX 0’s in for every bit so
that on the POSITIVE EDGE of the next clock cycle, the pipeline register will be filled with 0’s
and not affect any registers or memory.

0-Q0)

L.D{v-)

12

[2.a.iii] Create a testbench that instantiates all four of the registers in a single design. Show
that values that are stored in the initial IF/ID register are available as expected four cycles
later, and that new values can be inserted into the pipeline every single cycle. Most
importantly, this testbench should also test that each pipeline register can be individually
stalled or flushed.

The following waveform depicts our testbench that instantiates all four pipeline register
buffers in a single testbench. For this test, we only used one sample datapath signal that
propagates throughout each pipeline register, which was PC 4. Initially, we began by
buffering decimal 1 through the IF ID PC 4 pipeline register, and then waiting 4 clock
cycles to confirm decimal 1 is propagated through each pipeline register. The order of the
pipeline registers follows the stages between them, following IF_ID, ID EX,

EX DMEM, and finally DMEM_WB. If we write a signal decimal 2 and hold that value
through multiple clock cycles, 2’s are confirmed to be filled through each pipeline
register as expected. When we wrote decimal 4 for [F PC 4, we drove the stall control
for each pipeline register on the clock cycle; it was expected to write a new value for

PC 4, indicating that the old contents of 0 were not written over. Finally, we simulated a
condition that had two data hazards and a control hazard, which led to two stalls and then
a flush. This was very beneficial to test since a sample set of instructions with a
read/write data dependency and a flush was how we derived the logic for our data hazard
module.

4 simi_RST
— Data Inputs
B simi_IF_PC_4
- Stall Inputs

simi_IF_ID_STALL
“# sim:i_ID_EX_STALL
4 simi_EX_DMEM_STALL

“ simi_DMEM_WB_STALL

— Flush Inputs
¢ simi_IF_ID_FLUSH
¢ simi_ID_EX_FLUSH
4 simi_EX_DMEM_FLUSH
¢ simi_DMEM_WB_FLUSH
— Data Outputs
B sims_ID_PC_4
B sims_EX_PC_4
B sims DMEM_PC_4
B sims WB_PC_4

13

[2.b.i] list which instructions produce values, and what signals (i.e., bus names) in the

pipeline these correspond to.

Produce Produce

Instruction Format Decode Execute Produce Demem Writeback
add R - s_EX_ALUCut |s_DMEM_ALUOut s_RegWrData
addi | - s EX ALUOut (s DMEM ALUOut s RegWrData
addiu I - s_EX_ALUCut |s_DMEM_ALUOut s_RegWrData
addu R : s EX_ALUOut (s DMEM_ALUOut s RegWrData
and R = s_EX_ALUOut (s DMEM_ALUQut s_RegWrData
andi 1 : s EX_ALUOut (s DMEM_ALUOut s RegWrData
[ui | - s_EX_ALUOut (s DMEM_ALUOQut s_RegWrData
Iw | = s_EX_ALUOut (s DMEM_DMEM_DATA |s_RegWrData
nor R - s_EX_ALUOut (s DMEM_ALUOQut s_RegWrData
Xor R = s_EX_ALUOut (s DMEM_ALUOut s_RegwWrData
Xori | - s_EX_ALUOut (s DMEM_ALUOQut s_RegWrData
or R = s_EX_ALUOut (s DMEM_ALUOut s_RegwWrData
ori | - s_EX_ALUOut (s DMEM_ALUOut s_RegWrData
sit R - s_EX_ALUCut |s_DMEM_ALUOut s_RegWrData
slti | - s EX ALUOut (s DMEM ALUOut s RegWrData
sl R - s_EX_ALUCut |s_DMEM_ALUOut s_RegWrData
srl R - s EX ALUOut (s DMEM ALUOut s RegWrData
sra R - s_EX_ALUCut |s_DMEM_ALUOut s_RegWrData
S 1 : s EX_ALUOuUt |- -

sub R = s_EX_ALUOut (s EX_ALUOuUt s_RegWrData
subu R : s EX_ALUOut (s EX ALUOuUt s RegWrData
beq | 5_ID_branch - - -

bne | 5_ID_branch - - -

j J s_ID_IMM_EXT |- - -

jal J s ID_IMM_EXT|s EX PC 4 |s DMEM_PC 4 s_RegWrData
ir R s_ID_IMM_EXT |- - -

bgez | 5_ID_IMM_EXT|- - -

bgezal | 5_ID_branch s EX PC 4 s DMEM_PC_4 -

bgtz I s_ID_branch - - -

blez | 5 ID branch - - -

bltzal I s_ID_branch s_EX_PC_4 s_DMEM_PC_4 -

bitz | 5 ID branch - - -

halt s_ID_Halt, s_EX_Halt, s_DMEM_Halt, s_WE_Halt,

14

[2.b.ii] List which of these same instructions consume values, and what signals in the
pipeline these correspond to.

15

Consume Consume

Instruction Format Decode Decode Decode

add R - 5 ID_rs_DATA |[s_ID_rt_DATA,
addi I - s ID_rs_DATA |-

addiu I - s ID rs DATA |-

addu R - s ID_rs_DATA |[s_ID_rt_DATA,
and R - s ID rs DATA |s_ID it DATA,
andi I - s 1D _rs_DATA |-

Iui I - s ID_rs_DATA |-

I I - s ID rs DATA |-

nor R - 5 ID_rs_DATA |[s_ID_rt_DATA,
®or R - 5 ID_rs_DATA |s_ID_rt_DATA,
xori I - s ID rs DATA |-

or R - s ID_rs_DATA |[s_ID_rt_DATA,
ori I - s ID rs DATA |-

slt R - s ID _rs DATA |s_ID_rt_DATA,
st I - s ID_rs_DATA |-

sll R - s ID rs DATA |s_ ID it DATA,
srl R - 5 ID_rs_DATA |[s_ID_rt_DATA,
sra R - 5 ID_rs_DATA |s_ID_rt_DATA,
SW I - s ID rs DATA |5 ID it DATA,
sub R - s ID_rs_DATA |[s_ID_rt_DATA,
subu R - s ID rs DATA |s_ID it DATA,
beq I 5_ID_branch s ID _rs DATA |s_ID_rt_DATA,
bne I 5 _|ID_branch s ID_rs_DATA |s_ID_rt_DATA,
j J s 1D _IMM_EXT]| - -

jal J s ID_IMM_EXT]| - -

jr R s 1D _IMM_EXT| s_ID_rs_DATA |-

bgez I s ID_IMM_EXT] s ID rs DATA |-

bgezal I 5 _|ID_branch s ID_rs_DATA |-

bgtz I 5_ID _branch s ID rs DATA |-

blez I 5_ID_branch s 1D _rs_DATA |-

bltzal I 5 _|ID_branch s ID_rs_DATA |-

bitz I 5s_ID_branch s ID rs DATA |-

halt 5 |ID_Halt, - -

[2.b.iii] generalized list of potential data dependencies. From this generalized list, select
those dependencies that can be forwarded (write down the corresponding pipeline stages
that will be forwarding and receiving the data), and those dependencies that will require

hazard stalls.

EXRS ALU INPUT EXRTALUINPUT DMEM DATA INPUT
Producing Signal s_EX_RS_DATA_MUX_FWD s_EX_RT_DATA_MUX_FWD s_EX_DMEM_DATA_MUX_FWD |Branch JR
s_EX_RS_MUX_FWD_SEL = 00 NO NO NOT ADDRESSED NOT ADDRESSED
NO s_EX_RT_MUX_FWD_SEL =00 s_DMEM_DATA_FWD_SEL =00 |[NOT ADDRESSED |NOT ADDRESSED
s_EX_RS_MUX_FWD_SEL =10 |s EX_RT_MUX_FWD_SEL =10 |s_DMEM_DATA_FWD_SEL = 10 |NOT ADDRESSED |NOT ADDRESSED
s_EX_RS_MUX_FWD_SEL =01 |s EX_RT_MUX_FWD_SEL =01 |s_DMEM_DATA_FWD_SEL = 01 |NOT ADDRESSED |NOT ADDRESSED
Would need to be Would need to forward both
4’0, forwared to the producing signals to jump
S comparator module adder

[2.b.iv] global list of the datapath values and control signals that are required during each
pipeline stage

B

sioran sexden JsovemHat___________ sweHat |
Sign extender in ID stage
ALU!

s
s_DMEM_overflow_chk 's_WB_overflow_ch Overflow checked in last stage

Branch control in ID stage
Writeback in last stage.

s_DMEM_reg_DST_DATA_SEL [1:0] |s WB_reg_DST_DATA _SEL [10] _|Writeback in last stage

Notes

s_EX_nAdd_Sub
s_EX_shift_SEL[1:0]
s_EX_logic_SEL[1:0]
s_EX_out_SEL[1:0]

s o exFusn |
Select line for ALU RS forwarding
Select ine for ALU RT forwarding
Select line for DMEM Data
forwarding
indicator for SW in EX stage,
indicating stallto hazard detection

s DMEM_DATA_FWD_SEL

s_LW_HAZARD_CHK

s_LW_HAZARD_CHK

HW Pipeline Control Signals

Datapath Signal 1D (Instruction Decode) Notes
branch 5_ID_branch s_EX_branch
PC[31:0) s IF_PC[31:0] Assign 1o nextinstrAddr
Has to propogate through for writeback for jal
PC_4[31:0] s IF_PC_4(31:0] s 1D_PC_4[31:0] s EX_PC_4(31:0] s DMEM_PC_4[31:0] s WB PC 4[31:0] _[toset31]=PC+4
INSTR [31.0] s ID_INSTR [31.0] Use given Instr signal for IF-
s_ID_OPCODE [5:0] s_EX_OPCODE [5:0]
s_ID_FUNCT [5:0] s_EX_FUNCT [5:0]
5 1D_rt_ADDR [4:0] s EX_t_ADDR [4:0] t_ADDR needed in EX for forwarding
s_1D_rs_ADDR [40] s_EX_rs_ADDR [4.0] r5_ ADDR needed in EX for forwarding
5_1D_rd_ADDR [4.0] s_EX_rd_ADDR [4.0] Needed for WB
5_ID_SHAMT [4:0] s_EX_SHAMT [4:0]
Not needed since sign extender in ID and
5_1D_IMM [15:0] tums into sign extended immediate 32 bit
s 1D_J_ADDR [25:0]
5_1D_rs_DATA[31.0] s_EX_rs_DATA [31:0]
s_ID_nt_DATA [31:0] s_EX_t_DATA[31:0] 's_DMEM_rt_DATA [31:0] DMemData used in DMEM stage
DMemAddr used in DMEM stage. When to
s_EX_ALUOW [31:0] s_DMEM_ALUOUt [31:0] s WB_ALUOW [31:0] _|assign for output? WB?
MUX for second ALU operand befween RT
s_EX_t_DATA_MUX [31:0] DATA and EXT IMM
s_ID_IMM_EXT [31:0) 's_EX_IMM_EXT [31:0]
s_EX_overflow s_DMEM_overflow s WB_overflow
Needed between EX/MEM buffer to writeback
s DMEM_DMEM_DATA [31:0] |s WB_DMEM_DATA [31|MUX
RegWr s_EX_RegWr 's_DMEM_RegWr s_WB_RegWr Final write signal, MUXXED out
MUX with rd_ADDR, rt_ADDR, and decimal
RegWrAddr [4:0] 's_EX_RegWrAddr [4:0] 's_DMEM_RegWrAddr [4:0] |s_WB_RegWrAddr [4:0] 31 (Sra reg)

RS_DATA_FWD_MUX [31:0]
RT_DATA_FWD_MUX [31.0]
DMEM_DATA_MUX_FWD [310]

s ID_RS_DATA_FWD_MUX [3f
s_ID_RT_DATA_FWD_MUX [3
's_EX_DMEM_DATA_MUX_FWD [31:0] |s_DMEM_DMEM_DATA_MUX_FWD [31:0)

HW Pipeline Datapath Signals

16

[2.c.i] list all instructions that may result in a non-sequential PC update and in which
pipeline stage that update occurs.

beqg- decode
bne- decode
j- decode

jal- decode
jr- decode
bgez- decode
bgezal- decode
bgtz- decode
blez- decode
bltzal- decode
bltz- decode

[2.c.ii] For these instructions, list which stages need to be stalled and which stages need to
be squashed/flushed relative to the stage each of these instructions is in.

beqg- if branch taken instruction IF_ID flush
bne- if branch taken instruction IF_ID flush
j- instruction IF_ID flush

jal- instruction IF_ID flush

jr- instruction IF_ID flush

bgez- if branch taken instruction IF_ID flush
bgezal- if branch taken instruction IF_ID flush
bgtz- if branch taken instruction IF_ID flush
blez- if branch taken instruction IF_ID flush
bltzal- if branch taken instruction IF_ID flush
bltz- if branch taken instruction [F_ID flush

Any time an unconditional or conditional branch is taken, we will flush the IF_ID register
ONLY, since we have moved our branch checking to the ID stage. We load PC+4 after
the branch and jump instructions, predicting that the branch will NOT be taken, and will
NOT flush the instruction if it is not.

17

[2.d] implement the hardware-scheduled pipeline using only structural VHDL. As with the
previous processors that you have implemented, start with a high-level schematic drawing
of the interconnection between components.

4!

—]

18

[2.e.i] Create a spreadsheet to track these cases and justify the coverage of your testing
approach. Include this spreadsheet in your report as a table. Show the Questasim output for

the following test

Test data forwarding and hazard detection here

A v E C

Instruction TEST CASE Reasoning

add ALU RS, AL RT Forwarding From DMEM ALL out or WE Mux to EX
addi ALU RS Forwarding From DMEM ALU out or WE Mux to EX
addiu ALU RS Forwarding From DMEM ALU out or WEB Mux to EX
addu ALU RS, ALU RT Forwarding From DMEM ALU out or WEB Mux to EX
and ALU RS, AL RT Forwarding From DMEM ALL out or WE Mux to EX
andi ALU RS Forwarding From DMEM ALU out or WE Mux to EX
lui ALU RS, ALU RT Mo data dependencies can anly cause them

Iy DMEM Has delayed producing timing from all other commands
nor ALU RS, AL RT Forwarding From DMEM ALL out or WE Mux to EX
xar ALU RS, ALU RT Forwarding From DMEM ALU out or WE Mux to EX
Ol ALU RS Forwarding From DMEM ALU out or WE Mux to EX
ar ALU RS, ALU RT Forwarding From DMEM ALU out or WEB Mux to EX
ari ALU RS Forwarding From DMEM ALL out or WE Mux to EX
slt ALU RS, AL RT Forwarding From DMEM ALL out or WE Mux to EX
slti ALU RS Forwarding From DMEM ALU out or WE Mux to EX
sll ALU RT Forwarding From DMEM ALU out or WEB Mux to EX
srl ALU RT Forwarding From DMEM ALU out or WEB Mux to EX
sra ALU BT |.F1}r'.-.rarding From DMEM ALU out or WB Mux to EX
oW DMEM Has different consuming points from ALU operations
sub ALU RS, ALU RT Forwarding From DMEM ALU out or WE Mux to EX
subu ALU RS, ALU RT Forwarding From DMEM ALU out or WEB Mux to EX
heq Control/Jump Siall for all data dependencies

bne Control/Jump Stall for all data dependencies

I MA Mo Data dependies

jal ALU RS, ALU RT Can cause data dependencies

jr ALU RS, AL RT Meeds stalling from data dependencies

bhgez Control/Jump Stall for all data dependencies

boezal Control/Jump Stall for all data dependencies

batz Control/Jump Stall for all data dependencies

hlez Control/Jump Stall for all data dependencies

bltzal Control/Jump Stall for all data dependencies

bltz Control/Jump Stall for all data dependencies

halt MA Mo data dependencies

19

Data Hazard Test Cases

£ HoMMyMipsACLK
£ foMyMipsARST

(2 Jo. Joi. Yol J7. J%5. 17 Jo. Jol.Jo. 5. Jo1.]0. Yol Joi.Jo. Jo. Y3 [l 7. JoL [5. Ju. @ [0 5 CgFE. |

J 00..10.. 0. 100 0. Y0, 700,70, 0] 00, J0.] J]d 10,0070, 0. J]J 0.

;]_A]_A]_)._A]_A]_).Ln]_‘

fo] oo, Jo. Yoi_]
0008 100 9 s T T Jor Joo ToF oD |
Tt Tao— T Too T Tor Too Toe e e

TN s B (TR o1 Joo J3F [z [3F | I KL Joo_]
000 0. 700..] [0._0] _J00.. 0. _J0. J00..]0.

.m:IMyMlps!s

.m:IMyMlps!s EX_.
RoyWipsis EX....
HoMyMipsis EX_
HoMyMipsis_EX_.

HomMyMipsis_EX_

HoiMyMipsis_EX_

oMyMipsis_EX_.
MEM

1540 ns

ALU_RS Data Hazard Test Cases

Wave - Default E + o

';‘J_n_‘;_A_.;_‘;_A_A_.;_‘._A_n_‘;_A_A_‘;_A_A_n_‘;_A_.;_A;A_A_.;A_A_.;_A;A_A_A;A_A_.;ﬂ_ﬂ_.;_ﬂ_ﬂ_ﬂ_) 004000E4 1 —

g;g;_.;_lgg.;‘gggk_ﬂ_ﬂ_n_ﬂ_‘;.gqu_. 00400060 [|

@ @:‘;@:
EREL (10] (5L__[0 {1070 15 1o 11070 L]
::M_A‘J_AL_M_"__“_-A_‘ Oz o L Co [TTeesselsld [afo [[d]

IR 1 Jo -1 1d

0000

ALU_RT Data Hazard Test Cases

20

£ wsim3stoMyMipshi
£ vsimaoMyMipsfi.

< wsim3:Mb/MyMips!...
Instruction Decode

wsim3:/MyMips..
wsim3:h/MyMips.
SIm3:MyMips.
wsima:b/MyMips.
wsim3:b/MyMips.
Sima3:/MyMips.
wsim3:tb/MyMips.
SIm3:/MyMips.
vsim3:/b/MyMipst..

— Execute

B vsim3MyMips...

0000.

o

‘Wave - Default

— General Inputs
£ toMMyMipsiCLE
< tbMyMipsARST
— Instruction Fetch
“ KoMyMipsis_Inst [32h3C011001
B tbMyMipsis IF_PC |32RXX000KX
HoMMyMips/s_IF_P...

19 10 311 112 19 12 116 10 31 116 131 [0]

000000, 0... /000000,

IOMYMIpSis_DM...

DMEM Data Hazard Test Case

[2.e.ii] Create a spreadsheet to track these cases and justify the coverage of your testing
approach. Include this spreadsheet in your report as a table. Show the Questasim output for
the following test

Create a set of assembly programs that exhaustively tests control hazard avoidance.
Minimally include one test program per control flow instruction. Then you should create
a set of test programs that activate combinations of these instructions in the pipeline.

21

Instruction Assembly File Branch Taken |Branch Not Taken
j J_controlHazard s Flush IF/ID N/A
jal jal_controlHazard.s Flush IF/ID N/A
jr Jr_controlHazard.s Flush IF/ID N/A
beq_controlHazard.s Flush IF/ID No Action
beq branch_explosion_controlHazard s | Flush IF/ID No Action
bne bne_controlHazard s Flush IF/ID No Action
bgez bgez controlHazard s Flush IF/ID No Action
bgezal bgezal_controlHazard.s Flush IF/ID MNo Action
bgtz bgtz_controlHazard s Flush IF/ID No Action
blez blez_controlHazard.s Flush IF/ID No Action
bltzal bltzal_controlHazard s Flush IF/ID No Action
bltz bltz_controlHazard.s Flush IF/ID No Action

Control Hazard Test Cases

The following waveforms demonstrate that when a control hazard occurs, the IF/ID
pipeline register flushes all of its contents. The control hazard occurs when a branch is
taken, since we will already be fetching the PC + 4 instruction after the branch or jump
instruction. We designed our prediction module to not flush the IF/ID Buffer register
when we do not branch, to help improve our CPI. In the following three waveforms, near
the cursor, it can be seen that one NOP is propagated ONLY when a branch is taken.

&’ s ID_INSTR
B s_ID_OPCODE
& s ID_FUNCT

B s ID_rs ADDR
s_ID_t_ADDR
B s ID_rd ADDR
s_ID_rs_DATA

B s D it DATA

J Instruction Control Hazard Test Case

— General Inputs

£ vsimLiCLK

£ vsimLiRST
— Instruction Fetch
wsiml:s_Inst
vsimlis_IF_PC

vsimL:s_ID_rs D..
vsim1:s_ID_rt DA..

22

BEQ Instruction Control Hazard Test Case

BGEZAL Instruction Control Hazard Test Case

In our final test, we created the assembly file branch_explosion_controlHazard.s, which
simulates 5 consecutive branch taken conditions in a row. Amazingly, this passed by the
end of everything. As with our other validation and waveforms, the instruction that was
fetched in the IF stage after the branch instruction would get flushed on every branch
taken, as seen below in the following waveforms.

B s ID_it DATA

Multiple Consecutive Branch Instructions Control Hazard Test Case

[2.f] report the maximum frequency your hardware-scheduled pipelined processor can run
at and determine what your critical path is (specify each module/entity/component that this
path goes through).

Maximum frequency WITH forwarding: 48.66 MHz

Critical Path:
1. Data Memory (?)
2. MUXto ALU
3. ALU (Ripple Adder)
4. ALU (Ripple SLL)
5. EX/DMEM Pipeline Register (MUX to write)

We assumed that the critical path changed from our ID stage to our EX stage due to adding more
multiplexers from the pipeline registers to the ALU inputs, leading to the increased timing delay
before the ALU processes its operations. Similar to the single cycle, the ALU ripple carry adder
led to a very high propagation delay, leading to our critical path again once we added more
hardware for forwarding. Despite this, our CPI dropped to an average of 1.50 for our tests, which
is a good tradeoff for decreasing the maximum frequency by around 6 MHz from a CPI average
of near 2.1.

23

